En este estudio, quería ver qué mejoras de rendimiento se pueden obtener utilizando una fuente de datos de ClickHouse en lugar de PostgreSQL. Sé los beneficios de rendimiento que obtengo al utilizar ClickHouse. ¿Persistirán estos beneficios si accedo a ClickHouse desde PostgreSQL usando un contenedor de datos externo (FDW)?
Los entornos de base de datos estudiados son PostgreSQL v11, clickhousedb_fdw y la base de datos ClickHouse. En última instancia, desde PostgreSQL v11, ejecutaremos varias consultas SQL enrutadas a través de nuestro clickhousedb_fdw a la base de datos de ClickHouse. Luego veremos cómo el rendimiento de FDW se compara con las mismas consultas ejecutadas en PostgreSQL nativo y ClickHouse nativo.
Base de datos de clickhouse
ClickHouse es un sistema de administración de bases de datos de código abierto basado en columnas que puede lograr un rendimiento de 100 a 1000 veces más rápido que los enfoques de bases de datos tradicionales, capaz de procesar más de mil millones de filas en menos de un segundo.
Clickhousedb_fdw
clickhousedb_fdw: el contenedor de base de datos externa de ClickHouse, o FDW, es un proyecto de código abierto de Percona. Aquí hay un enlace al repositorio de GitHub del proyecto .
En marzo escribí un blog que les cuenta más sobre nuestro FDW .
Como verá, esto proporciona FDW para ClickHouse, que permite SELECCIONAR e INSERTAR EN una base de datos ClickHouse desde el servidor PostgreSQL v11.
FDW , aggregate join. .
Benchmark environment
- Supermicro server:
- Intel® Xeon® CPU E5-2683 v3 @ 2.00GHz
- 2 sockets / 28 cores / 56 threads
- Memory: 256GB of RAM
- Storage: Samsung SM863 1.9TB Enterprise SSD
- Filesystem: ext4/xfs
- OS: Linux smblade01 4.15.0-42-generic #45~16.04.1-Ubuntu
- PostgreSQL: version 11
Benchmark tests
, - , , , « , » 1987 2018 . , .
85 , 109 .
Benchmark Queries
, ClickHouse, clickhousedb_fdw PostgreSQL.
Q# | Query Contains Aggregates and Group By |
---|---|
Q1 | SELECT DayOfWeek, count(*) AS c FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC; |
Q2 | SELECT DayOfWeek, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY DayOfWeek ORDER BY c DESC; |
Q3 | SELECT Origin, count(*) AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Origin ORDER BY c DESC LIMIT 10; |
Q4 | SELECT Carrier, count() FROM ontime WHERE DepDelay>10 AND Year = 2007 GROUP BY Carrier ORDER BY count() DESC; |
Q5 | SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year=2007 GROUP BY Carrier ) a INNER JOIN ( SELECT Carrier,count(*) AS c2 FROM ontime WHERE Year=2007 GROUP BY Carrier)b on a.Carrier=b.Carrier ORDER BY c3 DESC; |
Q6 | SELECT a.Carrier, c, c2, c1000/c2 as c3 FROM ( SELECT Carrier, count() AS c FROM ontime WHERE DepDelay>10 AND Year >= 2000 AND Year <= 2008 GROUP BY Carrier) a INNER JOIN ( SELECT Carrier, count(*) AS c2 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier ) b on a.Carrier=b.Carrier ORDER BY c3 DESC; |
Q7 | SELECT Carrier, avg(DepDelay) * 1000 AS c3 FROM ontime WHERE Year >= 2000 AND Year <= 2008 GROUP BY Carrier; |
Q8 | SELECT Year, avg(DepDelay) FROM ontime GROUP BY Year; |
Q9 | select Year, count(*) as c1 from ontime group by Year; |
Q10 | SELECT avg(cnt) FROM (SELECT Year,Month,count(*) AS cnt FROM ontime WHERE DepDel15=1 GROUP BY Year,Month) a; |
Q11 | select avg(c1) from (select Year,Month,count(*) as c1 from ontime group by Year,Month) a; |
Q12 | SELECT OriginCityName, DestCityName, count(*) AS c FROM ontime GROUP BY OriginCityName, DestCityName ORDER BY c DESC LIMIT 10; |
Q13 | SELECT OriginCityName, count(*) AS c FROM ontime GROUP BY OriginCityName ORDER BY c DESC LIMIT 10; |
Query Contains Joins | |
Q14 | SELECT a.Year, c1/c2 FROM ( select Year, count()1000 as c1 from ontime WHERE DepDelay>10 GROUP BY Year) a INNER JOIN (select Year, count(*) as c2 from ontime GROUP BY Year ) b on a.Year=b.Year ORDER BY a.Year; |
Q15 | SELECT a.”Year”, c1/c2 FROM ( select “Year”, count()1000 as c1 FROM fontime WHERE “DepDelay”>10 GROUP BY “Year”) a INNER JOIN (select “Year”, count(*) as c2 FROM fontime GROUP BY “Year” ) b on a.”Year”=b.”Year”; |
Table-1: Queries used in benchmark
Query executions
: PostgreSQL , ClickHouse clickhousedb_fdw. .
Q# | PostgreSQL | PostgreSQL (Indexed) | ClickHouse | clickhousedb_fdw |
---|---|---|---|---|
Q1 | 27920 | 19634 | 23 | 57 |
Q2 | 35124 | 17301 | 50 | 80 |
Q3 | 34046 | 15618 | 67 | 115 |
Q4 | 31632 | 7667 | 25 | 37 |
Q5 | 47220 | 8976 | 27 | 60 |
Q6 | 58233 | 24368 | 55 | 153 |
Q7 | 30566 | 13256 | 52 | 91 |
Q8 | 38309 | 60511 | 112 | 179 |
Q9 | 20674 | 37979 | 31 | 81 |
Q10 | 34990 | 20102 | 56 | 148 |
Q11 | 30489 | 51658 | 37 | 155 |
Q12 | 39357 | 33742 | 186 | 1333 |
Q13 | 29912 | 30709 | 101 | 384 |
Q14 | 54126 | 39913 | 124 | 1364212 |
Q15 | 97258 | 30211 | 245 | 259 |
Table-1: Time taken to execute the queries used in benchmark
, X , Y . ClickHouse , postgres clickhousedb_fdw, . , PostgreSQL ClickHouse, ClickHouse clickhousedb_fdw.
ClickhouseDB clickhousedb_fdw. FDW , Q12. ORDER BY. - ORDER BY GROUP/BY ORDER BY ClickHouse.
2 Q12 Q13. , ORDER BY. , Q-14 Q-15 ORDER BY . ORDER BY 259 , ORDER BY — 1364212. , .
Q15: Without ORDER BY Clause
bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2
FROM (SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a
INNER JOIN(SELECT "Year", count(*) AS c2 FROM fontime GROUP BY "Year") b ON a."Year"=b."Year";
Q15: Query Without ORDER BY Clause
QUERY PLAN
Hash Join (cost=2250.00..128516.06 rows=50000000 width=12)
Output: fontime."Year", (((count(*) * 1000)) / b.c2)
Inner Unique: true Hash Cond: (fontime."Year" = b."Year")
-> Foreign Scan (cost=1.00..-1.00 rows=100000 width=12)
Output: fontime."Year", ((count(*) * 1000))
Relations: Aggregate on (fontime)
Remote SQL: SELECT "Year", (count(*) * 1000) FROM "default".ontime WHERE (("DepDelay" > 10)) GROUP BY "Year"
-> Hash (cost=999.00..999.00 rows=100000 width=12)
Output: b.c2, b."Year"
-> Subquery Scan on b (cost=1.00..999.00 rows=100000 width=12)
Output: b.c2, b."Year"
-> Foreign Scan (cost=1.00..-1.00 rows=100000 width=12)
Output: fontime_1."Year", (count(*))
Relations: Aggregate on (fontime)
Remote SQL: SELECT "Year", count(*) FROM "default".ontime GROUP BY "Year"(16 rows)
Q14: Query With ORDER BY Clause
bm=# EXPLAIN VERBOSE SELECT a."Year", c1/c2 FROM(SELECT "Year", count(*)*1000 AS c1 FROM fontime WHERE "DepDelay" > 10 GROUP BY "Year") a
INNER JOIN(SELECT "Year", count(*) as c2 FROM fontime GROUP BY "Year") b ON a."Year"= b."Year"
ORDER BY a."Year";
Q14: Query Plan with ORDER BY Clause
QUERY PLAN
Merge Join (cost=2.00..628498.02 rows=50000000 width=12)
Output: fontime."Year", (((count(*) * 1000)) / (count(*)))
Inner Unique: true Merge Cond: (fontime."Year" = fontime_1."Year")
-> GroupAggregate (cost=1.00..499.01 rows=1 width=12)
Output: fontime."Year", (count(*) * 1000)
Group Key: fontime."Year"
-> Foreign Scan on public.fontime (cost=1.00..-1.00 rows=100000 width=4)
Remote SQL: SELECT "Year" FROM "default".ontime WHERE (("DepDelay" > 10))
ORDER BY "Year" ASC
-> GroupAggregate (cost=1.00..499.01 rows=1 width=12)
Output: fontime_1."Year", count(*) Group Key: fontime_1."Year"
-> Foreign Scan on public.fontime fontime_1 (cost=1.00..-1.00 rows=100000 width=4)
Remote SQL: SELECT "Year" FROM "default".ontime ORDER BY "Year" ASC(16 rows)
, ClickHouse , clickhousedb_fdw ClickHouse PostgreSQL. clickhousedb_fdw , , ClickHouse. , fdw PostgreSQL .
Clickhouse https://t.me/clickhouse_ru
PostgreSQL https://t.me/pgsql