Hola. Hace casi dos años, compré un kit chino en aliexpress, que consiste en una placa de depuración EasyFPGA A2.2 con Cyclone IV EP4CE6E22C8N a bordo, un control remoto IR SE-020401, un programador, un par de cables y cables USB. Durante mucho tiempo, todo esto estuvo inactivo conmigo, tk. No se me ocurrió ninguna tarea interesante y que no consumiera mucho tiempo para mí.
El año pasado, en el mismo aliexpress, pedí una tira de LED RGB basada en los conocidos microcircuitos WS2811. Antes de comprar, después de mirar la revisión de YouTube del protocolo específico de estos microcircuitos, decidí que sería interesante escribir mi propio controlador para ellos para FPGA. Y desde la placa antes mencionada tiene un fotodetector a bordo, luego también puede agregar la capacidad de hacer clic en los modos con el control remoto del kit. Un proyecto de fin de semana antes de Año Nuevo.
Trabajando con WS2811
De hecho, a partir de la hoja de datos del WS2811 queda claro que el protocolo es bastante simple: deben transmitirse 24 bits de datos de color en formato RGB888 MSB-primero a la salida DIN del microcircuito. El microcircuito duplicará los siguientes 24 bits de datos recibidos en el pin DOUT, lo que permite que el WS2811 se conecte en cadena:
Diagrama de conexión en serie de los microcircuitos WS2811:
DIN . — 1.2 µs 1.3 µs, — 0.5 µs 2.0 µs . — 2.5 µs. 50 µs, OUTR ,OUTG OUTB, .
WS2811:
WS2811 WS2811Transmitter
module WS2811Transmitter
# (
CLOCK_SPEED = 50_000_000
)
(
input clkIN,
input nResetIN,
input startIN,
input [23:0] dataIN,
output busyOUT,
output txOUT
);
localparam DIVIDER_100_NS = 10_000_000; // 1 / 0.0000001 = 10000000
reg [4:0] cnt100ns;
reg [24:0] dataShift;
reg busy;
reg tx;
wire [24:0] dataShifted = (dataShift << 1);
wire clock100ns;
initial begin
busy = 0;
tx = 0;
cnt100ns = 5'd0;
end
assign busyOUT = busy;
assign txOUT = tx;
ClockDivider #(.VALUE(CLOCK_SPEED / DIVIDER_100_NS)) clock100nsDivider (
.clkIN(clkIN),
.nResetIN(busy),
.clkOUT(clock100ns)
);
always @(negedge clkIN or negedge nResetIN) begin
if (!nResetIN) begin
busy <= 0;
tx <= 0;
cnt100ns <= 5'd0;
end
else begin
if (startIN && !busy) begin
busy <= 1;
dataShift <= {dataIN, 1'b1};
tx <= 1;
end
if (clock100ns && busy) begin
cnt100ns <= cnt100ns + 5'd1;
if (cnt100ns == 5'd4 && !dataShift[24]) begin
tx <= 0;
end
if (cnt100ns == 5'd11 && dataShift[24]) begin
tx <= 0;
end
if (cnt100ns == 5'd24) begin
cnt100ns <= 5'd0;
dataShift <= dataShifted;
if (dataShifted == 25'h1000000) begin
busy <= 0;
end
else begin
tx <= 1;
end
end
end
end
end
endmodule
, clock100nsDivider 100 ns, clock100ns cnt100ns . startIN 1, , 1 busyOUT. txOUT , 12 cnt100ns 5 — txOUT . 25 , 24 , busyOUT 0.
, clkIN. , busyOUT.
24 FF0055h WS2811Transmitter:
NEC Infrared Transmission Protocol. 562.5µs 562.5µs. — 562.5µs 1.6875ms . — 9ms 4.5ms . 562.5µs .
: (9ms 4.5ms ), 8 , 8 — , 8 — , 8 562.5µs . LSB-first.
NEC Infrared Transmission :
NEC NecIrReceiver
module NecIrReceiver
# (
CLOCK_SPEED = 50_000
)
(
input clkIN,
input nResetIN,
input rxIN,
output dataReceivedOUT,
output [31:0] dataOUT
);
localparam DIVIDER_281250_NS = 3556; // 562.5µs / 2 = 281.25µs; 1 / 0.00028125 ≈ 3556
reg [23:0] pulseSamplerShift;
reg [33:0] dataShift;
reg [31:0] dataBuffer;
reg [1:0] rxState;
reg rxPositiveEdgeDetect;
reg clock281250nsParity;
reg clock281250nsNReset;
wire clock281250ns;
wire startFrameReceived;
wire dataPacketReceived;
initial begin
rxState = 2'd0;
rxPositiveEdgeDetect = 0;
clock281250nsParity = 0;
clock281250nsNReset = 0;
pulseSamplerShift = 24'd0;
dataShift = 34'd0;
dataBuffer = 32'd0;
end
assign dataReceivedOUT = rxState[0];
assign dataOUT = dataBuffer;
assign dataPacketReceived = dataShift[32];
assign startFrameReceived = dataShift[33];
ClockDivider #(.VALUE(CLOCK_SPEED / DIVIDER_281250_NS)) clock281250nsDivider (
.clkIN(clkIN),
.nResetIN(clock281250nsNReset),
.clkOUT(clock281250ns)
);
always @(posedge clkIN or negedge nResetIN) begin
if (!nResetIN) begin
rxState <= 2'd0;
rxPositiveEdgeDetect <= 0;
clock281250nsParity <= 0;
clock281250nsNReset <= 0;
pulseSamplerShift <= 24'd0;
dataShift <= 34'd0;
dataBuffer <= 32'd0;
end
else begin
case ({dataPacketReceived, rxState[1:0]})
3'b100 : begin
dataBuffer[31:0] <= dataShift[31:0];
rxState <= 2'b11;
end
3'b111, 3'b110 : rxState <= 2'b10;
default : rxState <= 2'd0;
endcase
case ({rxIN, rxPositiveEdgeDetect})
2'b10 : begin
rxPositiveEdgeDetect <= 1;
clock281250nsParity <= 0;
clock281250nsNReset <= 0;
pulseSamplerShift <= 24'd0;
case ({startFrameReceived, dataPacketReceived, pulseSamplerShift})
26'h0ffff00 : dataShift <= 34'h200000001;
26'h2000002 : dataShift <= {1'd1, dataShift[31:0], 1'd0};
26'h2000008 : dataShift <= {1'd1, dataShift[31:0], 1'd1};
default : dataShift <= 34'd0;
endcase
end
2'b01 : rxPositiveEdgeDetect <= 0;
endcase
if (clock281250nsNReset == 0) begin
clock281250nsNReset <= 1;
end
if (clock281250ns) begin
clock281250nsParity <= ~clock281250nsParity;
if (!clock281250nsParity) begin
pulseSamplerShift <= {pulseSamplerShift[22:0], rxIN};
end
end
end
end
endmodule
562.5µs. pulseSamplerShift rxIN 562.5µs. .. , ClockDivider — 281.25µs. clock281250ns clock281250nsParity, . rxPositiveEdgeDetect , pulseSamplerShift , .
00FF0FF0h NecIrReceiver:
Main
module Main
(
input clkIN,
input nResetIN,
input rxIN,
output txOUT
);
localparam IR_COMMAND_EQ = 32'h00ff906f;
localparam IR_COMMAND_PLAY = 32'h00ffc23d;
localparam IR_COMMAND_PREV = 32'h00ff22dd;
localparam IR_COMMAND_NEXT = 32'h00ff02fd;
localparam IR_COMMAND_MINS = 32'h00ffe01f;
localparam IR_COMMAND_PLUS = 32'h00ffa857;
localparam UNITS_NUMBER = 100;
localparam PATTERN_COLORS_NUMBER = 128;
localparam PATTERNS_NUMBER = 4;
localparam CLOCK_SPEED = 50_000_000;
localparam UPDATES_PER_SECOND = 20;
reg [$clog2(PATTERNS_NUMBER) - 1:0] patternIndex;
reg [$clog2(PATTERN_COLORS_NUMBER) - 1:0] colorIndex;
reg [$clog2(PATTERN_COLORS_NUMBER) - 1:0] colorIndexShift;
reg colorIndexShiftDirection;
reg [2:0] colorSwapIndex;
reg [$clog2(UNITS_NUMBER) - 1:0] unitCounter;
reg txStart;
reg pause;
reg beginTransmissionDelay;
wire ws2811Busy;
wire beginTransmission;
wire [23:0] colorData;
wire [23:0] colorDataSwapped;
wire [0:$clog2(PATTERNS_NUMBER * PATTERN_COLORS_NUMBER) - 1] colorIndexComputed;
wire irCommandReceived;
wire [31:0] irCommand;
wire rxFiltered;
initial begin
patternIndex = 0;
colorIndex = 0;
colorIndexShift = 0;
colorIndexShiftDirection = 0;
colorSwapIndex = 0;
unitCounter = 0;
txStart = 0;
pause = 0;
beginTransmissionDelay = 0;
end
assign colorIndexComputed = {patternIndex, (colorIndex + colorIndexShift)};
ROM1 rom(
.clock(clkIN),
.address(colorIndexComputed),
.q(colorData)
);
ColorSwap colorSwapper (
.dataIN(colorData),
.swapIN(colorSwapIndex),
.dataOUT(colorDataSwapped)
);
RXMajority3Filter rxInFilter (
.clockIN(clkIN),
.nResetIN(nResetIN),
.rxIN(rxIN),
.rxOUT(rxFiltered)
);
NecIrReceiver #(.CLOCK_SPEED(CLOCK_SPEED))
necIrReceiver (
.clkIN(clkIN),
.nResetIN(nResetIN),
.rxIN(~rxFiltered),
.dataReceivedOUT(irCommandReceived),
.dataOUT(irCommand)
);
ClockDivider #(.VALUE(CLOCK_SPEED / UPDATES_PER_SECOND))
beginTransmissionTrigger (
.clkIN(clkIN),
.nResetIN(nResetIN),
.clkOUT(beginTransmission)
);
WS2811Transmitter #(.CLOCK_SPEED(CLOCK_SPEED))
ws2811tx (
.clkIN(clkIN),
.nResetIN(nResetIN),
.startIN(txStart),
.dataIN(colorDataSwapped),
.busyOUT(ws2811Busy),
.txOUT(txOUT)
);
always @(posedge clkIN or negedge nResetIN) begin
if (!nResetIN) begin
patternIndex <= 0;
colorIndex <= 0;
colorIndexShift <= 0;
colorIndexShiftDirection <= 0;
colorSwapIndex <= 0;
unitCounter <= 0;
txStart <= 0;
pause <= 0;
beginTransmissionDelay <= 0;
end
else begin
if (irCommandReceived) begin
case (irCommand)
IR_COMMAND_PLAY : pause <= ~pause;
IR_COMMAND_EQ : colorIndexShiftDirection <= ~colorIndexShiftDirection;
IR_COMMAND_NEXT : patternIndex <= patternIndex + 1;
IR_COMMAND_PREV : patternIndex <= patternIndex - 1;
IR_COMMAND_PLUS : colorSwapIndex <= (colorSwapIndex == 3'd5) ? 0 : (colorSwapIndex + 1);
IR_COMMAND_MINS : colorSwapIndex <= (colorSwapIndex == 0) ? 3'd5 : (colorSwapIndex - 1);
endcase
end
if (beginTransmission) begin
unitCounter <= UNITS_NUMBER;
colorIndex <= 0;
case ({colorIndexShiftDirection, pause})
2'b10 : colorIndexShift <= colorIndexShift + 1;
2'b00 : colorIndexShift <= colorIndexShift - 1;
endcase
beginTransmissionDelay <= 1;
end
else if (beginTransmissionDelay) begin
beginTransmissionDelay <= 0;
end
else if (unitCounter != 0 && !ws2811Busy) begin
colorIndex <= colorIndex + 1;
unitCounter <= unitCounter - 1;
txStart <= 1;
end
else begin
txStart <= 0;
end
end
end
endmodule
. “” beginTransmission , . irCommandReceived : , , RGB ColorSwap .
EP4CE6E22C8N , M9K Memory Blocks. , , ROM, 24- . .mif , ROM Megafunction Quartus ROM.v . .mif .sof , .
color_patterns_generator.js Node.js, rom.mif :
fs = require("fs");
const MODE_REPEAT = "repeat";
const MODE_STRETCH = "stretch";
const MODE_GRADIENT_STRETCH = "gradient-stretch";
const ROM_FILE_NAME = "rom.mif";
const COLORS_NUM = 128;
const COLORS_PATTERNS = [{
mode: MODE_GRADIENT_STRETCH,
colors: [
0xff0000,
0xff0000,
0xff00ff,
0xff00ff,
0x0000ff,
0x0000ff,
0xff00ff,
0xff00ff,
0xffff00,
0xffff00,
0x00ffff,
0x00ffff,
0x00ff00,
0x00ff00,
0xff0000,
]
}, {
mode: MODE_STRETCH,
colors: [
0xff0000,
0xff0000,
0xff00ff,
0xff00ff,
0x0000ff,
0x0000ff,
0xff00ff,
0xff00ff,
0xffff00,
0xffff00,
0x00ffff,
0x00ffff,
0x00ff00,
0x00ff00,
]
}, {
mode: MODE_REPEAT,
colors: [
0xff0000,
0xff0000,
0xff0000,
0xff0000,
0xff0000,
0xff0000,
0xff0000,
0xffffff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xffffff,
0x0000ff,
0x0000ff,
0x0000ff,
0x0000ff,
0x0000ff,
0x0000ff,
0x0000ff,
0xffffff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0xffffff,
0xffff00,
0xffff00,
0xffff00,
0xffff00,
0xffff00,
0xffff00,
0xffff00,
0xffffff,
0x00ffff,
0x00ffff,
0x00ffff,
0x00ffff,
0x00ffff,
0x00ffff,
0x00ffff,
0xffffff,
0x00ff00,
0x00ff00,
0x00ff00,
0x00ff00,
0x00ff00,
0x00ff00,
0x00ff00,
0xffffff,
]
}, {
mode: MODE_REPEAT,
colors: [
0xff0000,
0xff0000,
0x00ff00,
0x00ff00,
0xffff00,
0xffff00,
0xff0000,
0xff0000,
0xff0000,
0x00ff00,
0x00ff00,
0x00ff00,
0xffff00,
0xffff00,
0xffff00,
0xff00ff,
0xff00ff,
0xff00ff,
0xff00ff,
0x00ff00,
0x00ff00,
0x00ff00,
0x00ff00,
0xffff00,
0xffff00,
0xffff00,
0xffff00,
]
}
];
function getRed(color) {
return ((color >> 16) & 0xff)
}
function getGreen(color) {
return ((color >> 8) & 0xff)
}
function getBlue(color) {
return ((color) & 0xff)
}
function toHex(d) {
let result = Number(d).toString(16).toUpperCase();
return result.length % 2 ? "0" + result : result;
}
function generate() {
let result = "";
let byteAddress = 0;
result += "WIDTH = 24; -- The size of data in bits\n";
result += "DEPTH = " + (COLORS_NUM * COLORS_PATTERNS.length) + "; -- The size of memory in words\n";
result += "ADDRESS_RADIX = HEX; -- The radix for address values\n";
result += "DATA_RADIX = HEX; -- The radix for data values\n";
result += "CONTENT -- start of (address : data pairs)\n";
result += "BEGIN\n";
let red;
let green;
let blue;
for (let pattern of COLORS_PATTERNS) {
for (let i = 0; i < COLORS_NUM; i++) {
if (pattern.mode === MODE_GRADIENT_STRETCH) {
let index = i * (pattern.colors.length - 1) / COLORS_NUM;
let colorA = pattern.colors[Math.floor(index)];
let colorB = pattern.colors[Math.floor(index) + 1];
let colorBValue = index % 1;
let colorAValue = 1 - colorBValue;
red = Math.round(getRed(colorA) * colorAValue + getRed(colorB) * colorBValue);
green = Math.round(getGreen(colorA) * colorAValue + getGreen(colorB) * colorBValue);
blue = Math.round(getBlue(colorA) * colorAValue + getBlue(colorB) * colorBValue);
} else if (pattern.mode === MODE_STRETCH) {
let index = Math.floor(i * pattern.colors.length / COLORS_NUM);
let color = pattern.colors[index];
red = getRed(color);
green = getGreen(color);
blue = getBlue(color);
} else if (pattern.mode === MODE_REPEAT) {
let index = i % pattern.colors.length;
let color = pattern.colors[index];
red = getRed(color);
green = getGreen(color);
blue = getBlue(color);
}
result +=
toHex(i + byteAddress) + " : " +
toHex(red) +
toHex(green) +
toHex(blue) + ";\n";
}
byteAddress += COLORS_NUM;
}
result += "END;";
return result;
}
try {
fs.writeFileSync(ROM_FILE_NAME, generate());
console.log("Success");
} catch (err) {
console.log("Failed\n", err);
}
:
.