3D ML. Parte 4: renderizado diferencial



En varias publicaciones anteriores de esta serie, ya hemos mencionado el concepto de renderizado diferencial . Hoy toca aclarar qué es y con qué se come.



, , 3D ML . , — SoftRasterizer PyTorch 3D. , , “ ” , , .



3D ML :



  1. 3D
  2. 3D ML
  3. 3D ML


GitHub .



IT- “VR/AR & AI” — PHYGITALISM.



Rendering pipeline: forward and inverse





, - 3D , :



  • , 3D ( ) .. forward rendering;
  • , 3D ( ) .. inverse rendering.


, , ( ).





.1 TensorFlow Graphics (github page).



, “3D mesh reconstruction from single image”, . , 3D ( №2 ). , 3D , - ( .2).





.2 SoftRas (github page).



, , 3D :



  • 3D , ;
  • (, , ..);
  • ;
  • , .


, .



, .



Why is rendering not differentiable?





.3 Soft Rasterizer [1]. : METRO — , PAGS — , L — , UN — , norte — , Z — , U — 3D 2D , F — , re — Soft Rasterizer, yo,yo¯ — SoftRas . — , — .



( .3 — ). - , , , (. , ), . .





, — . ( JavaScript ).



, : “ — , , , 3D 2D ”.



.



№1 ( )





, , , , . , , , . ( ) . , , .



№2 ( )





, , , , . , .



Make it differentiable! — Soft Rasterizer



, , 3D ML — , .



:





. , Soft Rasterizer, : -, , -, PyTorch 3D [6].



[1], .



№2, “” , .



rejyo, pagsyo 0 1 — Fj (- ). σ — ( σ, ), re(yo,j)pagsyo Fj ( , , , , l1 ), δjyo — , 1 -1 ( δ , , , ), syogramometrooyore — , .



№1, “” k — (blending).



: yo- (yoyo), Cjyo k — (j=1,......,k), . segundo (background colour), UNS — . zjyoyo- j- , γ — ( , ).



Soft Rasterizer, , .



.4 PyTorch 3D ( ).



Soft Rasterizer PyTorch 3D , PyTorch, CUDA. [github page], 4- ( ), , ( , , , ) k .





.5 PyTorch 3D ( ).



PyTorch 3D, Soft Rasterizer. , \sigma, \gamma.



anaconda, pytorch 1.1.0. CUDA.



import matplotlib.pyplot as plt
import os
import tqdm
import numpy as np
import imageio
import soft_renderer as sr

input_file = 'path/to/input/file'
output_dir = 'path/to/output/dir'


, ( , texture_type=’vertex’), .



# camera settings
camera_distance = 2.732
elevation = 30
azimuth = 0

# load from Wavefront .obj file
mesh = sr.Mesh.from_obj(
                         input_file, 
                         load_texture=True, 
                         texture_res=5, 
                         texture_type='surface')

# create renderer with SoftRas
renderer = sr.SoftRenderer(camera_mode='look_at')

os.makedirs(args.output_dir, exist_ok=True)


, .




# draw object from different view
loop = tqdm.tqdm(list(range(0, 360, 4)))
writer = imageio.get_writer(
                            os.path.join(output_dir, 'rotation.gif'),  
                            mode='I')

for num, azimuth in enumerate(loop):
    # rest mesh to initial state
    mesh.reset_()
    loop.set_description('Drawing rotation')
    renderer.transform.set_eyes_from_angles(
                                            camera_distance, 
                                            elevation, 
                                            azimuth)
    images = renderer.render_mesh(mesh)
    image = images.detach().cpu().numpy()[0].transpose((1, 2, 0))
    writer.append_data((255*image).astype(np.uint8))
writer.close()


. σ γ.



# draw object from different sigma and gamma
loop = tqdm.tqdm(list(np.arange(-4, -2, 0.2)))
renderer.transform.set_eyes_from_angles(camera_distance, elevation, 45)
writer = imageio.get_writer(
                            os.path.join(output_dir, 'bluring.gif'), 
                            mode='I')

for num, gamma_pow in enumerate(loop):
    # rest mesh to initial state
    mesh.reset_()
    renderer.set_gamma(10**gamma_pow)
    renderer.set_sigma(10**(gamma_pow - 1))
    loop.set_description('Drawing blurring')
    images = renderer.render_mesh(mesh)
    image = images.detach().cpu().numpy()[0].transpose((1, 2, 0))
    writer.append_data((255*image).astype(np.uint8))
writer.close()

# save to textured obj
mesh.reset_()
mesh.save_obj(
              os.path.join(args.output_dir, 'saved_spot.obj'), 
              save_texture=True)


(cow.obj, cow.mtl, cow.png — , , wget) :





Neural rendering





3D ML, , (neural rendering). , : .



, :





Experiment: Mona Liza reconstruction



3D , redner, , [ 4 ].



, .. 3D morphable model [8] — , 3D. 3D , , ( , Word2Vec 3D ).



Basel face model (2017 version). model2017-1_bfm_nomouth.h5 .



.



import torch
import pyredner
import h5py
import urllib
import time

from matplotlib.pyplot import imshow
%matplotlib inline

import matplotlib.pyplot as plt
from IPython.display import display, clear_output
from matplotlib import animation

from IPython.display import HTML


# Load the Basel face model
with h5py.File(r'model2017-1_bfm_nomouth.h5', 'r') as hf:
    shape_mean = torch.tensor(hf['shape/model/mean'], 
                              device = pyredner.get_device())
    shape_basis = torch.tensor(hf['shape/model/pcaBasis'], 
                               device = pyredner.get_device())
    triangle_list = torch.tensor(hf['shape/representer/cells'], 
                                 device = pyredner.get_device())
    color_mean = torch.tensor(hf['color/model/mean'], 
                              device = pyredner.get_device())
    color_basis = torch.tensor(hf['color/model/pcaBasis'], 
                               device = pyredner.get_device())


shape_basis ( 199 PCA), — color_basis ( 199 PCA), — shape_mean, color_mean. triangle_list .



, , , .



indices = triangle_list.permute(1, 0).contiguous()

def model(
        cam_pos, 
        cam_look_at, 
        shape_coeffs, 
        color_coeffs, 
        ambient_color, 
        dir_light_intensity):
    vertices = (shape_mean + shape_basis @ shape_coeffs).view(-1, 3)
    normals = pyredner.compute_vertex_normal(vertices, indices)
    colors = (color_mean + color_basis @ color_coeffs).view(-1, 3)
    m = pyredner.Material(use_vertex_color = True)
    obj = pyredner.Object(vertices = vertices, 
                          indices = indices, 
                          normals = normals, 
                          material = m, 
                          colors = colors)
    cam = pyredner.Camera(position = cam_pos,
                          # Center of the vertices                          
                          look_at = cam_look_at,
                          up = torch.tensor([0.0, 1.0, 0.0]),
                          fov = torch.tensor([45.0]),
                          resolution = (256, 256))
    scene = pyredner.Scene(camera = cam, objects = [obj])
    ambient_light = pyredner.AmbientLight(ambient_color)
    dir_light = pyredner.DirectionalLight(torch.tensor([0.0, 0.0, -1.0]), 
                                          dir_light_intensity)
    img = pyredner.render_deferred(scene = scene, 
                                   lights = [ambient_light, dir_light])
    return img


. . , :




cam_pos = torch.tensor([-0.2697, -5.7891, 373.9277])
cam_look_at = torch.tensor([-0.2697, -5.7891, 54.7918])
img = model(cam_pos, 
            cam_look_at, 
            torch.zeros(199, device = pyredner.get_device()),
            torch.zeros(199, device = pyredner.get_device()),
            torch.ones(3), 
            torch.zeros(3))

imshow(torch.pow(img, 1.0/2.2).cpu())

face_url = 'https://raw.githubusercontent.com/BachiLi/redner/master/tutorials/mona-lisa-cropped-256.png'

urllib.request.urlretrieve(face_url, 'target.png')
target = pyredner.imread('target.png').to(pyredner.get_device())

imshow(torch.pow(target, 1.0/2.2).cpu())




, .



# Set requires_grad=True since we want to optimize them later
cam_pos = torch.tensor([-0.2697, -5.7891, 373.9277], 
                       requires_grad=True)
cam_look_at = torch.tensor([-0.2697, -5.7891, 54.7918], 
                           requires_grad=True)
shape_coeffs = torch.zeros(199, device = pyredner.get_device(), 
                           requires_grad=True)
color_coeffs = torch.zeros(199, device = pyredner.get_device(), 
                           requires_grad=True)
ambient_color = torch.ones(3, device = pyredner.get_device(), 
                           requires_grad=True)
dir_light_intensity = torch.zeros(3, device = pyredner.get_device(), 
                                  requires_grad=True)

# Use two different optimizers for different learning rates
optimizer = torch.optim.Adam(
                             [
                              shape_coeffs, 
                              color_coeffs, 
                              ambient_color, 
                              dir_light_intensity], 
                             lr=0.1)
cam_optimizer = torch.optim.Adam([cam_pos, cam_look_at], lr=0.5)


, ( MSE + ) 3D .



plt.figure()
imgs, losses = [], []

# Run 500 Adam iterations
num_iters = 500
for t in range(num_iters):
    optimizer.zero_grad()
    cam_optimizer.zero_grad()
    img = model(cam_pos, cam_look_at, shape_coeffs, 
                color_coeffs, ambient_color, dir_light_intensity)
    # Compute the loss function. Here it is L2 plus a regularization 
    # term to avoid coefficients to be too far from zero.
    # Both img and target are in linear color space, 
    # so no gamma correction is needed.

    loss = (img - target).pow(2).mean()
    loss = loss 
         + 0.0001 * shape_coeffs.pow(2).mean() 
         + 0.001 * color_coeffs.pow(2).mean()
    loss.backward()

    optimizer.step()
    cam_optimizer.step()

    ambient_color.data.clamp_(0.0)
    dir_light_intensity.data.clamp_(0.0)

    # Plot the loss
    f, (ax_loss, ax_diff_img, ax_img) = plt.subplots(1, 3)
    losses.append(loss.data.item())

    # Only store images every 10th iterations
    if t % 10 == 0:
        # Record the Gamma corrected image
        imgs.append(torch.pow(img.data, 1.0/2.2).cpu()) 
    clear_output(wait=True)
    ax_loss.plot(range(len(losses)), losses, label='loss')
    ax_loss.legend()
    ax_diff_img.imshow((img -target).pow(2).sum(dim=2).data.cpu())
    ax_img.imshow(torch.pow(img.data.cpu(), 1.0/2.2))
    plt.show()




:



fig = plt.figure()

# Clamp to avoid complains
im = plt.imshow(imgs[0].clamp(0.0, 1.0), animated=True)

def update_fig(i):
    im.set_array(imgs[i].clamp(0.0, 1.0))
    return im,
anim = animation.FuncAnimation(fig, update_fig, 
                               frames=len(imgs), interval=50, blit=True)
HTML(anim.to_jshtml())




Conclusions



— , . , .



( Kaolin, PyTorch 3D, TensorFlow Graphics), . , (Soft Rasterizer, redner). , .



, . , 2D 3D . .



References
  1. Liu, S., Li, T., Chen, W. and Li, H., 2019. Soft rasterizer: A differentiable renderer for image-based 3d reasoning. In Proceedings of the IEEE International Conference on Computer Vision (pp. 7708-7717). [ paper ]
  2. Loper, M.M. and Black, M.J., 2014, September. OpenDR: An approximate differentiable renderer. In European Conference on Computer Vision (pp. 154-169). Springer, Cham. [ paper ]
  3. Kato, H., Ushiku, Y. and Harada, T., 2018. Neural 3d mesh renderer. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3907-3916). [ paper ]
  4. Li, T.M., Aittala, M., Durand, F. and Lehtinen, J., 2018. Differentiable monte carlo ray tracing through edge sampling. ACM Transactions on Graphics (TOG), 37(6), pp.1-11. [ paper ]
  5. Chen, W., Ling, H., Gao, J., Smith, E., Lehtinen, J., Jacobson, A. and Fidler, S., 2019. Learning to predict 3d objects with an interpolation-based differentiable renderer. In Advances in Neural Information Processing Systems (pp. 9609-9619). [ paper ]
  6. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J. and Gkioxari, G., 2020. Accelerating 3D Deep Learning with PyTorch3D. arXiv preprint arXiv:2007.08501. [ paper ] [ github ]
  7. Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K., Martin-Brualla, R., Simon, T., Saragih, J., Nießner, M. and Pandey, R., 2020. State of the Art on Neural Rendering. arXiv preprint arXiv:2004.03805. [ paper ]
  8. Blanz, V. and Vetter, T., 1999, July. A morphable model for the synthesis of 3D faces. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques (pp. 187-194). [ paper ][ project page ]





All Articles