Las matrices seguras de tipos son un tema constante. Discuten sobre su relevancia, y se escriben lenguajes completos para implementar listas con una longitud a nivel de tipo . Me pareció extraño que todavía no haya ninguna variante en Haskell que cumpla con los criterios cuerdos de conveniencia y seguridad. ¿Hay alguna razón para la falta de bibliotecas listas para usar, o simplemente no son necesarias? Vamos a averiguarlo.
La manera más segura de entender por qué algo (¡que ciertamente debería serlo!) No lo es, es intentar hacerlo usted mismo. Intentemos ..
Expectativa
La primera cosa que viene a la mente (al menos para mí) artículo sobre la Haskell nivel de tipo , donde, con la ayuda de DataKinds
, GADTs
, KindSignatures
(una descripción breve de dónde y por qué se usan - abajo) se introducen los números naturales inductivas, y detrás de ellos y vectores parametrizar longitud:
data Nat = Zero | Succ Nat
data Vector (n :: Nat) a where
(:|) :: a -> Vector n a -> Vector ('Succ n) a
Nil :: Vector 'Zero a
infixr 3 :|
KindSignatures
se usa para indicar que n
puede no ser cualquier tipo con un tipo *
(como un parámetro en el mismo ejemplo), sino un valor de tipo Nat elevado al nivel de tipos. Esto es posible por extensión
DataKinds
. GADTs
son necesarios para que el constructor pueda influir en el tipo de valor. En nuestro caso, el constructor Nil
construirá exactamente el Vector de longitud Zero
, y el constructor :|
adjuntará un elemento de tipo al vector en el segundo argumento a
y aumentará el tamaño en uno. Para obtener una descripción más detallada y correcta, puede leer el artículo al que me referí anteriormente o la Wiki de Haskell.
Qué. Esto parece ser lo que necesitamos. Solo queda ingresar a la matriz:
newtype Matrix (m :: Nat) (n :: Nat) a = Matrix (Vector m (Vector n a))
Y esto incluso funcionará:
>>> :t Matrix $ (1 :| Nil) :| Nil
Matrix $ (1 :| Nil) :| Nil :: Num a => Matrix ('Succ 'Zero) ('Succ 'Zero) a
>>> :t Matrix $ (1 :| 2 :| Nil) :| (3 :| 4 :| Nil) :| Nil
Matrix $ (1 :| 2 :| Nil) :| (3 :| 4 :| Nil) :| Nil
:: Num a => Matrix ('Succ ('Succ 'Zero)) ('Succ ('Succ 'Zero)) a
Los problemas de este enfoque ya están surgiendo de todas las grietas, pero puedes vivir con ellos, continuaremos.
, , , , , :
(*|) :: Num a => a -> Matrix m n a -> Matrix m n a
(*|) n = fmap (n *)
-- fmap
--
instance Functor (Matrix m n) where
fmap f (Matrix vs) = Matrix $ fmap f <$> vs
instance Functor (Vector n) where
fmap f (v :| vs) = (f v) :| (fmap f vs)
fmap _ Nil = Nil
, :
>>> :t fmap (+1) (1 :| 2 :| Nil)
fmap (+1) (1 :| 2 :| Nil)
:: Num b => Vector ('Succ ('Succ 'Zero)) b
>>> fmap (+1) (1 :| 2 :| Nil)
2 :| 3 :| Nil
λ > :t 5 *| Matrix ((1 :| 2 :| Nil) :| ( 3 :| 4 :| Nil) :| Nil)
5 *| Matrix ((1 :| 2 :| Nil) :| ( 3 :| 4 :| Nil) :| Nil)
:: Num a => Matrix ('Succ ('Succ 'Zero)) ('Succ ('Succ 'Zero)) a
λ > 5 *| Matrix ((1 :| 2 :| Nil) :| ( 3 :| 4 :| Nil) :| Nil)
Matrix 5 :| 10 :| Nil :| 15 :| 20 :| Nil :| Nil
:
zipVectorWith :: (a -> b -> c) -> Vector n a -> Vector n b -> Vector n c
zipVectorWith f (l:|ls) (v:|vs) = f l v :| (zipVectorWith f ls vs)
zipVectorWith _ Nil Nil = Nil
(|+|) :: Num a => Matrix m n a -> Matrix m n a -> Matrix m n a
(|+|) (Matrix l) (Matrix r) = Matrix $ zipVectorWith (zipVectorWith (+)) l r
: , , . , :
-- transpose :: [[a]] -> [[a]]
-- transpose [] = []
-- transpose ([] : xss) = transpose xss
-- transpose ((x:xs) : xss) = (x : [h | (h:_) <- xss]) : transpose (xs : [ t | (_:t) <- xss])
transposeMatrix :: Vector m (Vector n a) -> Vector n (Vector m a)
transposeMatrix Nil = Nil
transposeMatrix ((x:|xs):|xss) = (x :| (fmap headVec xss)) :| (transposeMatrix (xs :| fmap tailVec xss))
, GHC ( ).
• Could not deduce: n ~ 'Zero
from the context: m ~ 'Zero
bound by a pattern with constructor:
Nil :: forall a. Vector 'Zero a,
in an equation for ‘transposeMatrix’
at Text.hs:42:17-19
‘n’ is a rigid type variable bound by
the type signature for:
transposeMatrix :: forall (m :: Nat) (n :: Nat) a.
Vector m (Vector n a) -> Vector n (Vector m a)
at Text.hs:41:1-79
Expected type: Vector n (Vector m a)
Actual type: Vector 'Zero (Vector m a)
• In the expression: Nil
In an equation for ‘transposeMatrix’: transposeMatrix Nil = Nil
• Relevant bindings include
transposeMatrix :: Vector m (Vector n a) -> Vector n (Vector m a)
(bound at Text.hs:42:1)
|
| transposeMatrix Nil = Nil
|
? , m Zero n Zero.
, , e Nil
, Nil
' n
. n
, , n
.
, , - , . Haskell , .
- . . ?
- linear
- laop
linear laop. ? , , : , Succ Zero:
Matrix $ (1 :| 2 :| 3 :| 4 :| Nil) :| (5 :| 6 :| 7 :| 8 :| Nil) :| (9 :| 10 :| 11 :| Nil) :| Nil
• Couldn't match type ‘'Zero’ with ‘'Succ 'Zero’
Expected type: Vector
('Succ 'Zero) (Vector ('Succ ('Succ ('Succ ('Succ 'Zero)))) a)
Actual type: Vector
('Succ 'Zero) (Vector ('Succ ('Succ ('Succ 'Zero))) a)
• In the second argument of ‘(:|)’, namely
‘(9 :| 10 :| 11 :| Nil) :| Nil’
In the second argument of ‘(:|)’, namely
‘(5 :| 6 :| 7 :| 8 :| Nil) :| (9 :| 10 :| 11 :| Nil) :| Nil’
In the second argument of ‘($)’, namely
‘(1 :| 2 :| 3 :| 4 :| Nil)
:| (5 :| 6 :| 7 :| 8 :| Nil) :| (9 :| 10 :| 11 :| Nil) :| Nil’
, GHC, - . ?
Template Haskell
TemplateHaskell (TH) — , -, , . .
v = [1 2 3]
m = [1 2 3; 4 5 6; 7 8 10]
:
matrix := line; line | line
line := unit units
units := unit | ε
unit := var | num | inside_brackets
- var —
- num — ( )
- inside_brackets — Haskell
(
)
. Haskell haskell-src-exts haskell-src-meta
matrix :: Parser [[Exp]]
matrix = (line `sepBy` char ';') <* eof
line :: Parser [Exp]
line = spaces >> unit `endBy1` spaces
unit :: Parser Exp
unit = (var <|> num <|> inBrackets) >>= toExpr
Exp — AST Haskell, , ( AST ).
c , ,
data Matrix (m :: Nat) (n :: Nat) a where
Matrix :: forall m n a. (Int, Int) -> ![[a]] -> Matrix m n a
, AST
expr :: Parser.Parser [[Exp]] -> String -> Q Exp
expr parser source = do -- parser matrix
--
let (matrix, (m, n)) = unwrap $ parse source parser
-- AST
let sizeType = LitT . NumTyLit
-- TypeApplication , ,
let constructor = foldl AppTypeE (ConE 'Matrix) [sizeType m, sizeType n, WildCardT]
let size = TupE $ map (LitE . IntegerL) [m, n]
let value = ListE $ map ListE $ matrix
pure $ foldl AppE constructor [size, value]
parse :: String -> Parser.Parser [[a]] -> Either [String] ([[a]], (Integer, Integer))
parse source parser = do
matrix <- Parser.parse parser "QLinear" source --
size <- checkSize matrix --
pure (matrix, size)
: QuasiQuoter
matrix :: QuasiQuoter
matrix =
QuasiQuoter
{ quoteExp = expr Parser.matrix,
quotePat = notDefined "Pattern",
quoteType = notDefined "Type",
quoteDec = notDefined "Declaration"
}
! :
>>> :set -XTemplateHaskell -XDataKinds -XQuasiQuotes -XTypeApplications
>>> :t [matrix| 1 2; 3 4 |]
[matrix| 1 2; 3 4 |] :: Num _ => Matrix 2 2 _
>>> :t [matrix| 1 2; 3 4 5 |]
<interactive>:1:1: error:
• Exception when trying to run compile-time code:
All lines must be the same length
CallStack (from HasCallStack):
error, called at src/Internal/Quasi/Quasi.hs:9:19 in qlnr-0.1.2.0-82f1f55c:Internal.Quasi.Quasi
Code: template-haskell-2.15.0.0:Language.Haskell.TH.Quote.quoteExp
matrix " 1 2; 3 4 5 "
• In the quasi-quotation: [matrix| 1 2; 3 4 5 |]
>>> :t [matrix| (length . show); (+1) |]
[matrix| (length . show); (+1) |] :: Matrix 2 1 (Int -> Int)
TH , c . , hackage
>>> [operator| (x, y) => (y, x) |]
[0,1]
[1,0]
>>> [operator| (x, y) => (2 * x, y + x) |] ~*~ [vector| 3 4 |]
[6]
[7]
Haskell , . ? . , ( ), .
, . : .
Enlaces duplicados al repositorio y piratería
Los comentarios, sugerencias y solicitudes de extracción son bienvenidos.